An Etale Approach to the Novikov Conjecture
نویسندگان
چکیده
We show that the rational Novikov conjecture for a group Γ of finite homological type follows from the mod 2 acyclicity of the Higson compactifcation of an EΓ. We then show that for groups of finite asymptotic dimension the Higson compactification is mod p acyclic for all p, and deduce the integral Novikov conjecture for these groups.
منابع مشابه
Geometrization of the Strong Novikov Conjecture for residually finite groups
In this paper, we prove that the Strong Novikov Conjecture for a residually finite group is essentially equivalent to the Coarse Geometric Novikov Conjecture for a certain metric space associated to the group. As an application, we obtain the Coarse Geometric Novikov Conjecture for a large class of sequences of expanders.
متن کاملGalois representations in arithmetic geometry
Takeshi SAITO When he formulated an analogue of the Riemann hypothesis for congruence zeta functions of varieties over finite fields, Weil predicted that a reasonable cohomology theory should lead us to a proof of the Weil conjecture. The dream was realized when Grothendieck defined etale cohomology. Since then, -adic etale cohomology has been a fundamental object in arithmetic geometry. It ena...
متن کامل00 3 Lipschitz Cohomology , Novikov Conjecture , and Expanders
We present sufficient conditions for the cohomology of a closed aspherical manifold to be proper Lipschitz in sense of Connes-Gromov-Moscovici [CGM]. The conditions are stated in terms of the Stone-Čech compactification of the universal cover of a manifold. We show that these conditions are formally weaker than the sufficient conditions for the Novikov conjecture given in [CP]. Also we show tha...
متن کاملManifold aspects of the Novikov Conjecture
Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic classes and the topology of manifolds. For more on the topology of manifolds and the Novikov Conjecture see [58], [47], [17]. This article ignores completely connections with C§-algebras (see the articles of Mishchenko, Kasparov, and Ro...
متن کاملManifold Aspects of the Novikov Conjecture Novikov Conjecture. Let H : M 0 ! M Be an Orientation-preserving Homo- Topy Equivalence between Closed, Oriented Manifolds. 1 for Any Discrete Group
be the Hirzebruch L-class of an oriented manifold M. Let B (or K(; 1)) denote any aspherical space with fundamental group. (A space is aspherical if it has a contractible universal cover.) In 1970 Novikov made the following conjecture. Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005